Home
Class 11
MATHS
Given that veca. vecb = veca.vecc, veca ...

Given that `veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca ` is not a zero vector. Show that `vecb=vecc`.

Text Solution

Verified by Experts

we have er`veca. Vecb = veca .vecc.` therefore,
`veca.vecb-veca .vecc = 0 or veca. (vecb -vecc) = 0 `
Therefore, there are three possibilities : (i) ,
(ii) `vecb - vecc = vec0 and (iii) veca` is perpendicu
`vecb - vecc`
Again, `veca xx vecb = veca xx vecc`, therefore, `veca xx vecb - veca xx vecc = vec0`
`or veca xx ( vecb - vecc) = vec0`
Therefore, again there are three posibilities,
`(i) veca= vec0, (ii) vecb - vecc = vec0 and (iii) veca` is parallel to `vecb - vecc`.
now ` veca` is given to be a non-zero vector. therefore, we have the following possibilities left :
`1. vecb -vecc= vec0`
2. `veca` is -perendicular to `vecb - vecc and veca` is parallel to `vecb - vecc`, which is absurd.
Therefore, the only possibility , left is `vecb -vecc = vec0 or vecb = vecc`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

if veca xx vecb = vecc,vecb xx vecc = veca , " where " vecc ne vec0 then

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

[veca, veca+vecb, veca+vecb+vecc] is :

Prove that [veca-vecb,vecb-vecc,vecc-veca]=0

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to

If veca, vecb,vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.