Home
Class 11
MATHS
Show that (veca-vecb)xx(veca+vecb)=2(vec...

Show that `(veca-vecb)xx(veca+vecb)=2(vecaxxvecb)`

Text Solution

Verified by Experts

`(veca - vecb) xx (veca + vecb) `
`= vecaxxveca + vecaxxvecb -vecbxxveca -vecbxxvecb`
`= veca xx veca + veca xx vecb + veca xx vecb -vecb xx vecb`
`= vec0 + 2veca xx vecb - vec0 = 2vea xx vecb`
Geometrically, the vector area of a parallelogram, whose sides are along vectors, `veca and vecb is veca xx vecb`. Also diagonals are long vectors, `veca - vecb and veca + vecb` and the vector area in terms of diagonal vectors is
`1/2 [(veca -vecb) xx (veca + vecb)]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)=-2[vecb vecc vecd] veca

Show that (veca xx vecb) *(vecc xx vecd) +(vecb xx vecc) *(veca xx vecd) +(vecc xx veca) *(vecb xx vecd)=0 .

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

For any four vectors veca , vecb , vecc , vecd we have (vecaxxvecb)xx(veccxxvecd)=[veca,vecb,vecd]vecc-[veca,vecb,vecc]vecd=[veca,vecc,vecd]vecb-[vecb,vecc,vecd]veca .

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is

If veca and vecb are two vectors, such that veca.vecblt0 and |veca.vecb|=|vecaxxvecb| then the angle between angles between the vectors veca and vecb is

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq