Home
Class 11
MATHS
prove that (veca.hati)(vecaxxhati)+(veca...

prove that `(veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0`

Text Solution

Verified by Experts

Let `veca = a_(1) hati + a_(2)hatj + a_(3) hatk`1, therefore,
`veca. Hati = (a_(1) hati = a_(2) and veca . Hatk = a_(3)`
`and vecaxxhati = (a_(1)hati+a_(2)hat j + a_(3) hatk) xx hati = a_(2)hatk + a_(3) hatj` ,
`(veca . hati ) (vecaxx hati) + (veca . hatj) (veca xx hatj) + (veca. hatk) (veca xx veck)`
`-a_(1)a_(2)hatk + a_(1)a_(3)hatj + a_(1)a_(2) hatk +a_(3)a_(2)hati`
`+a_(3)a_(2) hati -a_(3)a_(1)hati`
`vec0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

For any vector veca prove that hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxhatk)=2veca

prove that (veca.(vecbxxhati))hati+(veca.(vecbxxhatj))hatj+ (veca.(vecbxxhatk))hatk=vecaxxvecb

Ifveca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb= b_(1)hati+b_(2)hatj + b_(3)hatk, vecc=c_(1)hati+c_(2)hatj+c_(3)hatk and [3veca+vecb=vecc 3vecc + veca] =lambda|{:(veca.hati,veca.hatj,veca.hatk),(vecb.hati,veca.hatj,hatb.hatk),(vecc.hati,vecc.hatj,vecc.hatk):}| " then find the value of " lambda/4

If hati xx[(veca-hatj)xxhati]xx[(veca-hatk)xxhatj]+veckxx[(veca-veci)xxhatk]=0 , then find vector veca .

For any vector veca prove that |vecaxxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2) .

For any vector veca prove that |veca xxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2) .

If veca=hati+hatj+hatk, veca.vecb=1 and vecaxxvecb=hatj-hatk then vecb

If veca=hati+hatj+hatk,vecb=2hati+xhatj+hatk,vecc=hati-hatj+4hatk and veca.(vecbxxvecc)=70 , then x is equal to

If veca=2hati+3hatj-hatk, vecb=3hati+5hatj+2hatk, vec c= -hati-2hatj+3hatk , verify that (veca xx vecb) xx vec c=(veca *vec c) vecb-(vecb*vec c)veca

If veca=hati+2hatj+3hatk, vecb=2hati-hatj+hatk, vec c=3hati+2hatj+hatk and veca xx (vecb xx vec c)=l veca +m vecb + n vec c , find the value of l, m, n.