Home
Class 11
MATHS
A parallelogram is constructed on 3 ve...

A parallelogram is constructed on `3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b` are anti-parallel. Then the length of the longer diagonal is a .`40` b. `64` c. `32` d. `48`

A

40

B

64

C

32

D

48

Text Solution

Verified by Experts

The correct Answer is:
c

`(3veca + vecb) . (veca - 4 vecb)`
`= 3 |veca|^(2)- 11 veca.vecb - 4|vecb|^(2)`
` 3 xx 36 - 11 xx 6xx 8 cos pi - 4 xx 64 gt 0 `
Therefore, the angle between `veca and vecb` is acute. The longer, diagonal is given by
`vecalpha = ( 3veca + vecb) + (veca -4vecb) = 4veca - 3vecb)`
Now, `|vecalpha|^(2) = |4veca - 3vecb|^(2)`
`16|veca|^(2)+ 9 |vecb|^(2)- 24veca.vecb`
`16 xx 36 + 9 xx 64 - 24 xx 6 xx 8 cos pi`
`16 xx 144`
` or |4veca - 3vecb|= 48`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

Find | vec a|a n d| vec b|,if( vec a+ vec b)dot( vec a- vec b) = 8 , | vec a|=8| vec b|dot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If ( vec axx vec b)^2+( vec a dot vec b)^2=144a n d| vec a|=4, then find the value of | vec b|dot

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

Statement 1: | vec a|=3,| vec b|= 4 a n d | vec a+ vec b|=5,t h e n| vec a- vec b|=5. Statement 2: The length of the diagonals of a rectangle is the same.

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot

Let the vectors vec aa n d vec b be such that | vec a|=3| vec b|=(sqrt(2))/3,t h e n vec axx vec b is a unit vector, if the angel between vec aa n d vec b is?