Home
Class 11
MATHS
Let vec u , vec va n d vec w be such th...

Let ` vec u , vec va n d vec w` be such that `| vec u|=1,| vec v|=2a n d| vec w|=3.` If the projection of ` vec v` along ` vec u` is equal to that of ` vec w` along ` vec u` and vectors ` vec va n d vec w` are perpendicular to each other, then `| vec u- vec v+ vec w|` equals a. `2` b. `sqrt(7)` c. `sqrt(14)` d. `14`

A

2

B

`sqrt7`

C

`sqrt14`

D

14

Text Solution

Verified by Experts

The correct Answer is:
c

Given `vecv.vecu = vecw .vecu`
`and vecv bot vecw Rightarrow vecv .vecw = 0`
Now, `|vecu - vecu + vecw|^(2)`
` |vecu|^(2) + |vecv|^(2) + |vecw|^(2) = 2vecu.vecv`
` - 2vecw. Vecu + 2vecu .vecw`
1 + 4+ 9
`so |vecu -vecv - vecw|= sqrt14`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Let vec u , vec va n d vec w be vectors such that vec u+ vec v+ vec w=0. If | vec u|=3,| vec v|=4a n d| vec w|=5, then vec udot vec v+ vec vdot vec w+ vec wdot vec u is a. 47 b. -25 c. 0 d. 25

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Let the vectors vec aa n d vec b be such that | vec a|=3| vec b|=(sqrt(2))/3,t h e n vec axx vec b is a unit vector, if the angel between vec aa n d vec b is?

For any two vectors vec ua n d vec v prove that ( vec u . vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

Let vec u a n d vec v be unit vectors such that vec uxx vec v+ vec u= vec w and vec wxx vec u= vec vdot Find the value of [ vec u vec v vec w]dot

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

Given | vec a|=| vec b|=1a n d| vec a+ vec b|=sqrt(3). If vec c is a vector such that vec c- vec a-2 vec b=3( vec axx vec b), then find the value of vec c dot vec b

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot