Home
Class 11
MATHS
If vec ra n d vec s are non-zero consta...

If ` vec ra n d vec s` are non-zero constant vectors and the scalar `b` is chosen such that `| vec r+b vec s|` is minimum, then the value of `|b vec s|^2+| vec r+b vec s|^2` is equal to `2| vec r|^2` b. `| vec r|^2//2` c. `3| vec r""|^2` d. `|r|^2`

A

`2|vecr|^(2)`

B

`|vecr|^(2)//2`

C

`3|vecr|^(2)`

D

`|vecr|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
b

For minimum value `|vecr+ bvecs|=0`
Let `vecr and vecs` are anti - parallel so `bvecs =- vecr`
`|bvecs|^(2) + |vecr + bvecs|^(2) = |-vecr|^(2) + |vecr-vecr|^(2) = |vecr|^(2) `
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If vec ra n d vec s are non-zero constant vectors and the scalar b is chosen such that | vec r+b vec s| is minimum, then the value of |b vec s|^2+| vec r+b vec s|^2 is equal to a. 2| vec r|^2 b. | vec r|^2//2 c. 3| vec r""|^2 d. |r|^2

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

If vec a and vec b are two non -zero vectors, then (vec a + vec b) .(vec a - vec b) is equal to

If vec a and vec b are non - zero vectors and |vec a+ vec b| = |vec a - vec b| , then the angle between vec a and vec b is

The value of |vec(a)+vec(b)|^(2)+|vec(a)-vec(b)|^(2) is

If vec a and vec b are two non- zero vectors such that | vec a + vec b| = |vec a - vec b| , then show that vec a and vec b are perpendicular.

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

If vec a , vec ba n d vec c are three non-zero vectors, no two of which ar collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c|dot

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

Given | vec a|=| vec b|=1a n d| vec a+ vec b|=sqrt(3). If vec c is a vector such that vec c- vec a-2 vec b=3( vec axx vec b), then find the value of vec c dot vec b