Home
Class 11
MATHS
Vector vec c is perpendicular to vector...

Vector ` vec c` is perpendicular to vectors ` vec a=(2,-3,1)a n d vec b=(1,-2,3)` and satisfies the condition ` vec c .( hat i+2 hat j-7 hat k)=10.` Then vector ` vec c` is equal to a.`(7,5,1)` b. `-7,-5,-1` c. `1,1,-1` d. none of these

A

7,5,1

B

(-7, -5, -1)

C

1,1,-1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
a

Let `vecc = lambda (veca xx vecb)`.
Hence, ` lambda(veca xx vecb) . (hati + 2hatj -7hatk) =10`
` Rightarrow lambda|{:(2,-3,1),(1,-2,3), (1,2,-7):}|=10`
`or lambda = -1`
` Rightarrow vecc = - (veca xx vecb)` \
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the vectors vec a = hat i-2 hat j+ hat k and vec b=-2 hat i+4 hat j +5 hat k and vec c = hat i -6 hat j -7 hat k

The centre of the circle given by vec rdot( hat i+2 hat j+2 hat k)=15a n d| vec r-( hat j+2 hat k)|=4 is a. (0,1,2) b. (1,3,5) c. (-1,3,4) d. none of these

Find [vec a, vec b, vec c] if vec a = hat i-2 hat j+3 hat k and vec b=2 hat i-3 hat j + hat k and vec c = 3 hat i + hat j -2 hat k

Find the sum of the vectors vec a = hat i -2 hat j + hat k , vec b = 2 hat i +4 hat j +5 hat k and vec c = 2 hat i -6 hat j -7 hat k

Find the sum of the vectors vec a = hat i - 2 hat j + hat k , vec b = -2 hat i + 4 hat j + 5 hat k and vec c = hat i - 6 hat j - 7 hat k

Show that the vectors vec a = hat i-2 hat j+3 hat k and vec b=-2 hat i+3 hat j -4 hat k and vec c = hat i -3 hat j +5 hat k are coplanar

Find a unit vector perpendicular to each of the vector vec a = hat i - 2 hat j + 3 hat k and vec b = hat i + 2hat j - hat k .

Find vec a .(vec b × vec c) if vec a = 2 hat i+1 hat j+3 hat k and vec b=-1 hat i+2 hat j + hat k and vec c = 3 hat i + hat j +2 hat k

Find a unit vector perpendicular to each of the vector vec a+ vec b and vec a - vec b , where vec a = 3 hat i + 2 hat j + 2 hat k and vec b = hati + 2 hat j - 2 hat k .

Find [vec a, vec b, vec c] if vec a = hat i - 2 hat j + 3 hat k , vec b = 2 hat i - 3 hat j + hat k and vec c = 3 hat i + hat j - 2 hat k .