Home
Class 11
MATHS
If 4 vec a+5 vec b+9 vec c=0, then ( vec...

If `4 vec a+5 vec b+9 vec c=0,` then `( vec axx vec b)xx[( vec bxx vec c)xx( vec cxx vec a)]` is equal to a. vector perpendicular to the plane of`a ,b ,c` b. a scalar quantity c. ` vec0` d. none of these

A

a vector perpendicular to the plane of `veca, vecb and vecc`

B

a scalar quantity

C

`vec0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
c

`4 veca + 5 vecb + 9 vecc =0`
`Rightarrow "vcectors" veca,vecb and vecc` are coplanar.
`Rightarrow vecb xx vecc and vecc xx veca` are collinear.
`Rightarrow (vecb xx vecc) xx (vecc xx veca) = vec0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec(A) + vec(B) +vec(C)=0, "then" vec(A) xx vec(B) is :

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

vec ba n d vec c are unit vectors. Then for any arbitrary vector vec a ,((( vec axx vec b)+( vec axx vec c))xx( vec bxx vec c)).( vec b- vec c) is always equal to a. | vec a| b. 1/2| vec a| c. 1/3| vec a| d. none of these

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot