Home
Class 11
MATHS
The condition for equations vec rxx v...

The condition for equations ` vec rxx vec a= vec ba n d vec rxx vec c= vec d` to be consistent is a.` vec b . vec c= vec a . vec d` b. ` vec a . vec b= vec c .vec d` c. ` vec b . vec c+ vec a . vec d=0` d. ` vec adot vec b+ vec cdot vec d=0`

A

`vecb.vecc=veca.vecd`

B

`veca.vecb=vecc.vecd`

C

`vecb.vecc+veca.vecd=0`

D

`veca.vecb+vecc.vecd=0`

Text Solution

Verified by Experts

The correct Answer is:
c

` vecr xx veca = vecb `
` or vecd xx ( vecr xx veca)= vecd xx vecb`
`or (veca .vecd) vecr - (vecd.vecr) veca= vecd xx vecb`
` vecr xx vecc = vecd`
` or vecb xx ( vecr xx vecc) = vecb xx vecd`
` or (vecb .vecc) vecr - (vecb.vecr) vecc = vecb xx vecd`
Adding (i) and (ii) , we get
` ( veca. vecd + vecb . vecc) vecr- (vecd.vecr) veca - (vecb.vecr) vecc `
Now `vecr.vecd = 0 and vecb.vecr=0 as vecd and vecr` as `vecb and vecr` are mutually perpendicular.
Hence ` ( vecb.vecc + veca.vecd)vecr = vec0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec b . vec c= vec a . vec d b. vec a . vec b= vec c .vec d c. vec b . vec c+ vec a . vec d=0 d. vec adot vec b+ vec c .vec d=0

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a . vec c)| vec b|^2=( vec a . vec b)( vec b . vec c) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec a . vec d)[ vec a vec b vec c] b. ( vec a . vec c)[ vec a vec b vec d] c. ( vec a . vec b)[ vec a vec b vec d] d. none of these

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q