Home
Class 11
MATHS
If vector vec b=(t a nalpha,-12sqrt(sin...

If vector ` vec b=(t a nalpha,-12sqrt(sinalpha//2))a n d vec c=(t a nalpha, t a nalpha-3/(sqrt(sinalpha//2)))` are orthogonal and vector ` vec a=(13,sin2alpha)` makes an obtuse angle with the z-axis, then the value of `alpha` is `alpha=(4n+1)pi+tan^(-1)2` b. `alpha=(4n+1)pi-tan^(-1)2` c. `alpha=(4n+2)pi+tan^(-1)2` d. `alpha=(4n+2)pi-tan^(-1)2`

A

`alpha= ( 4n+1 ) pi + tan^(-1) 2`

B

`alpha= ( 4n+1 ) pi - tan^(-1) 2`

C

`alpha= ( 4n+2 ) pi + tan^(-1) 2`

D

`alpha= ( 4n+2 ) pi - tan^(-1) 2`

Text Solution

Verified by Experts

The correct Answer is:
b,d

Since `veca = 1,3, sin 2 alpha) ` makes on abtuse angle with the z-axis its z-component is negtive, thus,
` -1 le sin 2 alpha lt 0`
But `vecb.vecc=0`
` tan^(2) alpha - tan alpha -6 =0`
`(tan alpha -3) (tan alpha + 2) =0`
` Rightarrow tan alpha 3, -2`
Now, `tan alpha =3,` therefore,
`sin2 alpha = (2 tanalpha)/(1+tan^(2)alpha)= 6/(1+9)= 3/5`
( not possible as `sin 2 alpha lt 0`)
Now , if ` tan alpha = -2`
`Rightarrow sin2 alpha= (2tan alpha)/(1+ tan^(2)alpha)= (-4)/(1+_5) = (-4)/5`
`tan 2 alpha gt0`
Hence, ` 2alpha` is the third quadrant , Also , `sqrt(sin alpha//2)` is meaningful. if `0 lt sin alpha//2 1, ` then
`alpha= (4 n + 1) pi-tan^(-1)2`
`and alpha= (4n+2) pi - tan^(-1) 2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If vector vec b=(t a nalpha,-1, 2sqrt(sinalpha//2))a n d vec c=(t a nalpha, t a nalpha, 3/(sqrt(sinalpha//2))) are orthogonal and vector vec a=(1,3,sin2alpha) makes an obtuse angle with the z-axis, then the value of alpha is a alpha=tan^(-1)2 b. alpha=-tan^(-1)2 c. alpha=tan^(-1)2 d. alpha=tan^(-1)2

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

Prove that sin 4alpha = 4 tan alpha (1 - tan^(2) alpha)/((1 + tan^(2) alpha)^(2))

If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alpha-beta)=(1-n)t a nalphadot

Prove that sin4 alpha=4tan alpha (1- tan^(2)alpha)/((1+tan^2 alpha)^2

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

prove that : tan(alpha)+2 tan(2alpha) +4(tan4alpha)+8cot(8alpha) = cot(alpha)

If alpha=pi/(14), then the value of (tanalphatan2alpha+tan2alphatan4alpha+tan4alphatanalpha) is 1 (b) 1//2 (c) 2 (d) 1//3

If 2|sin2alpha|=|tanbeta+cotbeta|,alpha,beta in (pi/2,pi), then the value of alpha+beta is (a) (3pi)/4 (b) pi (c) (3pi)/2 (d) (5pi)/4