Home
Class 11
MATHS
If veca , vecb and vecc are three vecto...

If `veca , vecb and vecc ` are three vectors such that `vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb` then prove that `|veca|= |vecb|=|vecc|`

A

`vecA = ((vecaxxvecb)-veca)/(a^(2))`

B

`vecB = ((vecbxx veca) + veca (a^(2) - 1))/a^(2)`

C

`vecA = ((vecaxxvecb)+veca)/(a^(2))`

D

`vecB = ((vecbxx veca) - veca (a^(2) - 1))/a^(2)`

Text Solution

Verified by Experts

The correct Answer is:
b,c,

we have `vecA.vecB =veca`
`or vecA .veca + vecB.veca = veca.veca`
`or 1+ vecB.veca = a^(2)`
`or vecB.veca= a^(2)-1`
Also `vecA xx vecB =vecb`
`or veca xx (vecA xx vecB ) = veca xx vecb`
` or (veca. vecB)vecA - (veca.vecA) vecB = veca xx vecb`
`or (a^(2)-1) vecA -vecB = veca xx vecb`
( using (i) and ` veca. vecA =1`) (ii)
` and vecA + vecB =a`
form (ii) and (iii) , we have
`vecA= ((vecaxxvecb)+veca)/a^(2)`
`vecB=veca-{((vecaxxvecb)+veca)/a^(2)}`
` = ((vecbxxveca) + veca (a^(2) -1))/a^(2)`
thus `vecA= ((vecaxxvecb)+veca)/a^(2)`
` and vecB= ((vecbxxveca)+veca (a^(2) -1))/a^(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

if veca xx vecb = vecc,vecb xx vecc = veca , " where " vecc ne vec0 then

If veca, vecb,vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca, vecb and vecc are three unit vectors such that veca xx (vecb xx vecc) = 1/2 vecb , " then " ( vecb and vecc being non parallel)

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb,vecc are three vectors such that veca+2vecb+vecc=vec0 and |veca|=3,|vecb|=4,|vecc|=7 , find the angle between veca and vecb .

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .