Home
Class 11
MATHS
If vecaxx(vecbxxvecc)=(vecaxxvecb)xxvecc...

If `vecaxx(vecbxxvecc)=(vecaxxvecb)xxvecc` for non coplanar `veca,vecb,vecc` then……

A

`(veccxxveca)xx vecb =vec0`

B

`vecc xx (vecaxxvecb)=vec0`

C

`vecbxx (vecc xxveca)=vec0`

D

`veccxxvecaxxvecb=vecb xx (veccxxveca) = vec0`

Text Solution

Verified by Experts

The correct Answer is:
a,c,d

` veca xx (vecbxxvecc)=(vecaxxvecb)xxvecc`
`or (veca.vecc)vecb- (veca. Vecb) vecc = (veca.vecc) vecb- (vecc.vecv)veca `
`or (veca -vecb) vecc - (vecc.vecb)veca=0`
`or (vecc xx veca) xx vecb =0`
`or vecb xx (vecc xx veca) = (vecc xx veca) xx vecb =vec0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

if (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca,vecb,vecc are any three vectors such that vecb.veccne0 and veca.vecbne0 then veca and vecc are_______

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that veca-vecd and vecb-vecc are parallel.

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

If vecP = (vecbxxvecc)/([vecavecbvecc]),vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is

If veca =3veci+2vecj-4veck , vecb =5veci-3vecj+6veck , vecc =5veci+vecj+2veck ,fin(i) vecaxx(vecbxxvecc) (ii) (vecaxxvecb)xxvecc and show that they are not equal.

Prove that (veca.(vecbxxvecc))veca=(vecaxxvecb)xx(vecaxxvecc) .

If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively of a triangle ABC then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) veca.vecb=vecc=vecc=veca.a!=0 (D) vecaxxvecb+vecbxxvecc+veccxxvecavec0