Home
Class 11
MATHS
Prove that [veca-vecb,vecb-vecc,vecc-v...

Prove that ` [veca-vecb,vecb-vecc,vecc-veca]=0 `

A

Both the statements are true and statement 2 is the correct explanation for statement 1.

B

Both statements are true but statement 2 is not the correct explanation for statement 1.

C

Statement 1 is true and Statement 2 is false

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
b

`vecr.veca= vecr.vecb= vecr.vecc=0 ` only if `veca,vecb and vecc` are coplanar, thus,
`[veca vecb vecc] =0`
Hence, statement 2 is true
Also `[veca -vecb vecb-vecc vecc-veca]=0 " even " if [veca vecb vecc] ne 0`
Hence, statement 2 is not the correct explanation for statement 1.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

The vectors veca-vecb,vecb-vecc,vecc-veca are

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .

Prove that veca\'xxvecb\'+vecb\'xxvecc\'+vecc\'xxveca\'=(veca+vecb+vecc)/([veca vecb vecc])