Home
Class 11
MATHS
Given two orthogonal vectors vecA and Ve...

Given two orthogonal vectors `vecA and VecB` each of length unity. Let `vecP` be the vector satisfying the equation `vecP xxvecB=vecA-vecP`. then
which of the following statements is false ?

A

vectors `vecP, vecA and vecP xx vecB` ar linearly dependent.

B

vectors `vecP, vecB and vecP xx vecB` ar linearly independent

C

`vecP` is orthogonal to `vecB` and has length `1/sqrt2`.

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
d

`vecPxxvecB=vecA-vecP and |vecA|=|vecB|=1 and vecA.vecB=0`is given
Now `vecP xx vecB = vecA-vecP`
`(vecPxxvecB) xxvecB= (vecA-vecP)xxvecB`
(taking cross product with `vecB` on both sides)
`or (vecP.vecB)vecB- (vecB.vec B)vecP=vecAxxvec B -vecP xx vecB`
`or (vecP.vecB) vecB-vecP=vecA xx vecB-vecA+vecP`
`or 2vecP = vecA-vecA-vecAxxvec B-(vecP.vecB)vecB`
`or vecP= (vecA-vecAxxvecB=-(vecP.vecB)vecB)/2`
taking dot product with `vecB` on both sides of (i) get
`vecP.vecB=vecA.vecB-vecP.vecB`ltbr gt `Rightarrow vecP.vecB=0`
`Rightarrow vecP=( vecA + vecBxxvecA)/2`
Now
`(vecP xx vecB) xx vecB= (vecP.vecB) vecB-(vecB.vecB) vecP=-vecP`
`vecP,vecA,vecPxxvecB(=vecA-vecP)` are depenment
Also `vecP.vecB=0`
` and |vecP|^(2)=|(vecA-vecAxxvecB)/2|^(2)`
`(|vecA|^(2)+|vecAxxvecB|^(2))/4`
`(1+1)/4=1/2or |vecP|=1/sqrt2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Given two orthogonal vectors vecA and VecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then (vecP xx vecB ) xx vecB is equal to

Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2

If veca,vecb and vecc are three unit vectors satisfying veca-sqrt(3)vecb+vecc=vec0 then find the angle between veca and vecc ?

Given three vectors veca, vecb and vecc are non-zero and non-coplanar vectors. Then which of the following are coplanar.

Find the angle between two vectors veca nd vecb if abs(vecaxxvecb)=veca.vecb .

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

If the vectors veca and vecb are perpendicular to each other then a vector vecv in terms of veca and vecb satisfying the equations vecv.veca=0, vecv.vecb=1 and [(vecv. vecaxx vecb)]=1 is