Home
Class 11
MATHS
Ab, AC and AD are three adjacent edges o...

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector `veca`. The vector of the faces containing vertices A, B , C and A, B, D are `vecb and vecc`, respectively , i.e. `vec(AB) xx vec(AC) and vec(AD) xx vec(AB) = vecc` the projection of each edge AB and AC on diagonal vector `veca is |veca|/3`
vector `vec(AD)` is

A

`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2)`

B

`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) + (3(vecbxxveca))/|veca|^(2)`

C

`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) -(3(vecbxxveca))/|veca|^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
c

`veca=vec(AP)=vec(AB)+vec(AC)+vec(AD)`
`vec(AB)xxvec(AC)=vecb`
`vec(AD)xxvec(AB)=vecc`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AB).veca= (|veca|^(2))/3`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AC).veca= (|veca|^(2))/3`
` (vec(AB) xx vec(AC))xxveca = vecb xxveca`
`vec(AC)-vec(AB)=3(vecbxxveca)/(|veca|^(2))`
`|veca|^(2)=vec(AB).veca+vec(AC).veca+vec(AD).veca`
`(|veca|^(2))/3=vec(AD).veca`
`(vec(AD)xxvec(AB))xxveca=veccxxveca`
`vec(AB)- vec(AD) = 3 (vecc xx veca)/(|veca|^(2))`
Now from (ii) and (iii), we get `vec(AC) and vec(AD)` as
`vec(AC)=1/3veca+ (vecaxx(vecb xx vecc))/(|veca|^(2))+(3(vecbxxveca))/(|veca|^(2))`
` vec(AD)= 1/3veca+ (vecaxx(vecb-vecc))/(|veca|^(2))- (3(vec cxxveca))/(|veca|^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If vec(A) and vec(B) are two vectors , vec(A) . vec(B) = vec(A) xx vec(B) then resultant vector is :

If for two vectors vec(A) and vec(B), vec(A) xx vec(B) = 0 then the vectors are :

If for two vectors vec(A) and vec(B), vec(A) xx vec(B) = 0 then the vectors are :

Consider the triangle ABC with vertices A(1, 1, 1) B(1, 2, 3) and C(2, 3, 1). (a) Find vec(AB) and vec(AC) Find vec (AB) xx vec (AC) (c) Hence find the area of the triangle ABC.

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Prove that the points A, B, and C with position vectors veca, vec b and vec c respectively are collinear if and only if (vec b xx vec c)+(vec c xx vec a) + (vec a xx vec b) = vec 0 .

if veca xx vecb = vecc,vecb xx vecc = veca , " where " vecc ne vec0 then

Vectors vecA, vecB and vec C are such that vecA.vecB =0 and vecA. vecC = 0 . Then the vectors parallel to vec A

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=