Home
Class 11
MATHS
If vec c is a given non-zero scalar, ...

If ` vec c` is a given non-zero scalar, and ` vec Aa n d vec B` are given non-zero vector such that ` vec A_|_B ,` then find vector ` vec X` which satisfies the equation ` vec A . vec X =c` and ` vec Axx vec X= vec Bdot`

Text Solution

Verified by Experts

The correct Answer is:
`vecX= (vecB xx vecA=cvecA)/(vecA.vecA)`

`vecA xx vecX =vecB`
`or (vecAxx vecX)xx vecA =vecB xx vecA`
`or (vecA.vecA)vecX- (vec X.vecA)vecA=vecB xx vecA`
`or (vecA.vecA)vecX-cvecA=vecBxxvecA`
`or vecX= (vecB xx vecA + cvecA)/((vecA.vecA))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b ,a n d vec c are non-zero vectors such that vec adot vec b= vec adot vec c , then find the geometrical relation between the vectors.

If vec a and vec b are two non -zero vectors, then (vec a + vec b) .(vec a - vec b) is equal to

If vec a and vec b are two non- zero vectors such that | vec a + vec b| = |vec a - vec b| , then show that vec a and vec b are perpendicular.

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

If vec ba n d vec c are two-noncollinear vectors such that vec a||( vec bxx vec c), then prove that ( vec axx vec b) . ( vec axx vec c) is equal to | vec a|^2( vec bdot vec c)dot

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec a and vec b are non - zero vectors and |vec a+ vec b| = |vec a - vec b| , then the angle between vec a and vec b is

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a