Home
Class 11
MATHS
A , B , Ca n dD are any four points in t...

`A , B , Ca n dD` are any four points in the space, then prove that `| vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4` (area of ` A B C` .)

Text Solution

Verified by Experts

Let the position vectors of points A,B,C,D be `veca, vecb, vecc and vecd`, respectively, with respect to some origin.
`|vec(AB)xxvec(CD)+vec(BC)xx vec(AD)+vec(CA)xx vec(BD)|`
`[|(vecb-veca)xx(vecd-vecc)+ (vecc-vecb) xx (vecd -veca) + (veca -vecc) xx (vecd-vecb)|`
`2|vecb xx veca +vecc xx vecb +vecaxxvecc|`
`2(2 xx ("area of " triangleABC)`
` 4xx (" area of " triangle ABC)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

A , B , C , D are any four points, prove that vec A B dot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vectors b ,ca n dd are not coplanar, then prove that vector ( vec axx vec b)xx( vec cxx vec d)+( vec axx vec c)xx( vec d xx vec b)+( vec axx vec d)xx( vec bxx vec c) is parallel to vec adot

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

ABCDE is a pentagon .prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C