Home
Class 11
MATHS
Let vec A=2 vec i+ vec k , vec B= vec i...

Let ` vec A=2 vec i+ vec k , vec B= vec i+ vec j+ vec kdot` Determine a vector ` vec R` satisfying ` vec Rxx vec B= vec Cxx vec B` and ` vec Rdot vec A=0.`

Text Solution

Verified by Experts

The correct Answer is:
`-hati-8hatj+2hatk`

we are given that `vecA=2hati + hatk,vecB=hati+hatj+hatk and vecC= 4hati -3hatj +7hatk and ` to determine a vector `vecR` such that `vecR xx vecB = vecC xx vecB and vecR.vecA =0` Let `vecR =x hati + yhatj + zhatk`
then `vceR xx vecB = vecC xx vecB`
`Rightarrow |{:(hati,hatj,hatk),(x,y,z),(1,1,1):}|=|{:(hati,hatj,hatk),(4,-3,7),(1,1,1):}|`
`or (y-z) hati - (x-z) hatj + (x-y) hatk`
` =-10 hati + (x -z) hatj + 7 hatk`
y-z= -10
x-z =-3
x-y= 7
Also ` vecR.vecA=0`
` Rightarrow 2x +z=0`
Subsituting y =x-7 and z =-2x from (ii) and (iv), respectively in (i) , we get
x-7 +2x =-10
3x=-3
x=-1,y =-8 and z=2
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Let vec A=2 vec i+ vec k , vec B= vec i+ vec j+ vec kdot vec C = 4hati-3hatj+7hatk Determine a vector vec R satisfying vec Rxx vec B= vec Cxx vec B and vec Rdot vec A=0.

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

Let vec a= hat i+ hat j ; vec b=2 hat i- hat kdot Then vector vec r satisfying vec rxx vec a= vec bxx vec aa n d vec rxx vec b= vec axx vec b is hat i- hat j+ hat k b. 3 hat i- hat j+ hat k c. 3 hat i+ hat j- hat k d. hat i- hat j- hat k

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec a . vec b+ vec b . vec c+ vec c . vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c) vec adot vec b= vec bdot vec c= vec c dot vec a (d) vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

A vector vec d is equally inclined to three vectors vec a= hat i+ hat j+ hat k , vec b=2 hat i+ hat ja n d vec c=3 hat j-2 hat kdot Let vec x , vec y ,a n d vec z be thre vectors in the plane of vec a , vec b ; vec b , vec c ; vec c , vec a , respectively. Then vec xdot vec d=-1 b. vec ydot vec d=1 c. vec zdot vec d=0 d. vec rdot vec d=0,w h e r e vec r=lambda vec x+mu vec y+delta vec z

Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

Let the pairs a , ba n dc ,d each determine a plane. Then the planes are parallel if ( vec axx vec c)xx( vec bxx vec d)= vec0 b. ( vec axx vec c)dot( vec bxx vec d)= vec0 c. ( vec axx vec b)xx( vec cxx vec d)= vec0 d. ( vec axx vec b)dot( vec cxx vec d)= vec0

If vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k , then find the vaue of | vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec a vec bdot vec a vec cdot vec a vec cdot vec a vec cdot vec a| .

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec b . vec c= vec a . vec d b. vec a . vec b= vec c .vec d c. vec b . vec c+ vec a . vec d=0 d. vec adot vec b+ vec c .vec d=0