Home
Class 11
MATHS
Determine the value of c so that for all...

Determine the value of `c` so that for all real `x` , vectors `c x hat i-6 hat j-3 hat ka n dx hat i+2 hat j+2c x hat k` make an obtuse angle with each other.

Text Solution

Verified by Experts

The correct Answer is:
`-4//3lt c lt 0`

We have , `veca = cx hati - 6hatj - 3hatk`
`vecb = xhati + 2hatj + 2 2cx hatk`
now we know that `veca.vecb = |veca||vecb|cos theta`
As the angle between `veca and vecb` is obtuse, `cos theta lt 0`
`Rightarrow veca .vecb lt 0`
`Rightarrow cx^(2)-12 + 6cx lt 0`
` Rightarrow -cx^(2) - 6cx +12 gt 0, x in R`
`Rightarrow -c gt and D gt 0`
` Rightarrow c gt 0 36c^(2) + 48c lt0`
` Rightarrow c lt 0 and ( 3 c + 4) lt 0`
` Rightarrow c lt 0 and c gt - 4//3`
` Rightarrow -4//3 lt c lt 0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors hat i-2 hat j+3 hat ka n d3 hat i-2 hat j+ hat kdot

Find the angle between the vectors hat i - 2 hat j + 3 hat k and 3 hat i - 2 hat j + hat k .

Find the values of x, y and z so that the vectors vec a = x hat i + 2 hat j + z hat k and vec b = 2hati + y hat j + hat k are equal.

Find the values of x and y so that the vectors 4 hat i + 5 hat j and x hat i + y hat j are equal.

For what values of x, y and z the vectors 3 hat i - y hat j + 8 hat k and x hat i + 7 hat j + z hat k are equal?

Find angle theta between the vectors vec a = hat i+ hat j- hat k and vec b= hat i- hat j + hat k

If 3 hat i + 6 hat j + 2 hat k , hat i - 2 hat j + 3 hat k and 5 hat i + 2 hat j + m hat k are coplanar.

Find angle theta between the vectors vec a = hat i + hat j - hat k and vec b = hat i - hat j + hat k .

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

Find the angle of vector vec a = 6 hat i + 2 hat j - 3 hat k with x -axis.