Home
Class 11
MATHS
If vectors, vecb, vcec and vecd are not ...

If vectors, `vecb, vcec and vecd` are not coplanar, the pove that vector `(veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) ` is parallel to `veca`.

Text Solution

Verified by Experts

`(veca xxvecb)xx(veccxxvecd)+(veca xx vecc)xx (vecd xx vecb) + (veca xx vecdD) xx (vecb xx vecc)`
Here ` (veca xx vecb) xx (vecc xx vecd)`
`-(veccxxvecd.vecb)veca + (veccxxvecd.veca)vecb `
`= [veca vecc vecd]vecc-[vecb vecc vecd]veca`
`(veca xx vecc)xx (vecd xx vecb)`
`=-(vecc xx vecd.vecb)veca + (veccxxvecd.veca)vecb`
`=[veca vecd vecb]vecc-[vec cvecd vecb] veca`
`(veca xx vecd) xx (vecb xx vecc)`
`= (vecaxx vecd.vecc)vecb- (veca xx vecd.vecb)vecc`
` =-[veca vecc vecd] vecb -[veca vecd vecb] vecc`
(Note, Here we have tried to write the given expression is such a way that we can get terms involving `veca` and other simil,ar terms which can get cancelled)
Adding (i), (ii) and (iii), we get
Given vector `=- 2 [vecb vecc vecd] veca = k veca`
Hence, given vector is parallel to `veca`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Show that (veca xx vecb) *(vecc xx vecd) +(vecb xx vecc) *(veca xx vecd) +(vecc xx veca) *(vecb xx vecd)=0 .

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)=-2[vecb vecc vecd] veca

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (vecaxxvecb) xx (vecc xx vecd)+(vecb xx vecc) xx (veca xx vecd) + (vecc xx veca) xx (vecb xx vecd)=-muvecd Then the value of mu is

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to

[vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to