Home
Class 11
MATHS
If veca and vecb are two unit vectors in...

If `veca and vecb` are two unit vectors inclined at an angle `pi//3 then { veca xx (vecb+veca xx vecb)} .vecb` is equal to

Text Solution

Verified by Experts

Given that `veca ,vecb and vecc` are three unit vectors inclined at an angle `theta` with each other.
Also `veca , vecb and vecc` are non-coplanar, therefore,
`[veca vecb vecc] ne 0`
Also given that `veca xx vecb + vecb xx vecc d= pvec + qvecb + rvecc`
taking dot product on both sides with `veca`. we get
`p + q costheta + r cos theta= [veca vecbvecc]`
Similarly m taking dot product on both sides with `vecb and vecc` we get , respectively.
`p costheta+q+r cos theta=0`
`and p cos theta + q cos theta+r[veca vecb vecc]`
Adding (i), (ii) and (iii) we get
`p+q+r= (2[veca vecbvecc])/(2costheta+1)`
Multiplying (iv) by `cos theta` and subtraching (i) from it, we get
`p(cos theta-1)= (2[veca vecbvecc]costheta)/(2costheta+1)-[veca vecb vecc]`
`or (-[veca vecb vecc])/(2costheta+1)`
`or P= ([veca vecb vecc])/((1-cos theta) (1+2 cos theta))`
Similarly, (iv), `xx cos theta - ` (ii) gives
`r(cos theta-1)=(2[veca vecb vecc]costheta)/(2costheta+1)-[veca vecb vecc]`
`or r= (-[veca vecbvecc])/((2costheta+1)(costheta-1))`
But we have to find p,q and r in terms of `theta` only, so let us find the value of `[veca vecb vecc]`
we know that
`[veca vecb vecc]^(2)=|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vec c),(vecc.veca,vecc.vecb,vecc.vecc):}|= |{:(1,costheta,costheta),(costheta,1,cos theta),(cos theta,cos theta,1):}|`
On operating `C_(1) to C_(1) + C_(2)+C_(3)`, we get
`|{:(1+2costheta,costheta,costheta),(1+2costheta,1,costheta),(1+2costheta,costheta,1):}|=(1+2costheta)|{:(1,costheta,cos theta),(1,1,costheta),(1,cos theta,1):||`
Operating `R_(1) to R_(1)-R_(2)and R_(2) to R_(2)- R_(3)`, we get
`(1+2costheta)|{:(0,costheta-1,0),(0,1-costheta,costheta),(1,cos theta,1):}|`
Expanding along `C_(1)`
`(1 + 2cos theta) (1-cos theta)^(2)`
`[veca vecb vecc] = (1-cos theta) sqrt(1+2costheta)`
thus , we get
`P= 1/(sqrt(1+2costheta)),q= (-2costheta)/(sqrt(1+2costheta)),`
`r=1/(sqrt(1+2cos theta))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

|vecA xx vecB|^2 + |vecA . vecB|^2 is equal to

If veca and vecb are unit vectors, then find the greatest value of |veca+vecb|+ |veca-vecb| .

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If veca and vecb are two vectors of magnitude 2 and inclined at an angle 60^(@) then the angle between veca and veca+vecb is

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

Let veca and vecb be unit vectors that are perpendicular to each other l. then [veca+ (veca xx vecb) vecb + (veca xx vecb) veca xx vecb] will always be equal to

Let veca.vecb=0 where veca and vecb are unit vectors and the vector vecc is inclined an anlge theta to both veca and vecb. If vecc=mveca+nvecb + p(veca xx vecb) , (m,n,p in R) then

If veca and vecb are two vectors of magnitude 2 and inclined at an angle 60^(@) , then the angle between veca and veca+vecb is