Home
Class 11
MATHS
Prove that if the vectors vec a, vec b, ...

Prove that if the vectors `vec a, vec b, vec c` satisfy `vec a+ vec b + vec c = vec 0`, then `vec bxx vec c = vec c xx vec a = vec a xx vec b`

Text Solution

Verified by Experts

Given data are insufficient to uniquely determine the three vectors as there are only six equations involving nine variable.
Therefore, we can obtain infinite number of sets of three vectors, `vecv_(1),vecv_(2) and vecv_(3)` ,satisfying these conditions,
from the given data, we get
`vecv_(1).vecv_(2)=4Rightarrow |vecv_(1)|=2`
`vecv_(2).vecv_(2)=2 Rightarrow|vecv_(2)|=sqrt2`
`vecv_(3).vecv_(3) =29Rightarrow |vecv_(3)|=sqrt29`
Also `vecv_(1).vecv_(2)=-2`
` Rightarrow |v_(1)||v_(2)| cos theta=-2`
(where `theta` is the angle between `vecv_(1) and vecv_(2)`)
`or cos theta = (-1)/sqrt2`
`or theta-135^(@)`
Since any two vectors are always coplanar, let us suppose that `vecv_(1) and vecv_(2)` are in the x-y plane. Let `vecv_(1) ` be along the possitive direaction of the x-axis. then
`vecv_(1) = - hati +- hatj`
As `vecv_(2)` makes an angle `135^(@)` with `vecv_(1)` and lies in the x-y plane, also keeping in mind `|vecv_(2)| = sqrt2` we obtain
`vecv_(2) =-hati +- hatj`
Again let `vecv_(3) = alphahati + betahatj + gammahatk`
`vecv_(3) .vecv_(1)=6 Rightarrow2 alpha=6or alpha=3`
`and vecv_(3).vecv_(2)=-5 Rightarrow alpha+- beta=-5 or beta=+-2`
Also `|vecv_(3)|=sqrt29Rightarrowalpha^(2)+beta^(2)+gamma^(2)=29`
`Rightarrow gamma=+-4`
Hence `vecv_(3)=3hati+-2hatj+-34hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

Show that for any three vectors veca , vec b and vec c [ vec a + vec b, vecb + vec c , vec c + vec a ] =2[vec a , vec b , vecc] .

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a