Home
Class 11
MATHS
Let V be the volume of the parallelepied...

Let V be the volume of the parallelepied formed by the vectors, `veca = a_(1)hati=a_(2)hatj + a_(3) hatk , vecb = b_(1) hati + b_(2)hatj + b_(3) hatk and vecc =c_(1)hati + c_(2)hatj + c_(3)hatk . if a_(r) b_(r) nad c_(r) " where " r= 1,2,3` are non- negative real numbers and `sum_(r=1)^(3) (a_(r) + b_(r)+c_(r))=3L " show that " V leL^(3)`

Text Solution

Verified by Experts

Given that `veca=a_(1)hati+a_(2)hatj+a_(3)hatk`
`vecb=b_(1)hati+b_(2)hatj+b_(3)hatk`
`vecc=c_(1)hati+c_(2)hatj+c_(2)hatk`
where `a_(r),b_(r),c_(r) (r = 1,2,3)` are all non - negaitve real numbers.
Also `underset(r=1)overset3sum(a_(r) +b_(r)+c_(r))=3L`
To prove `VleL^(3)` where V is the volume of the parallelpiped formed by the vectors `veca. vecb and vecc`. we have
`V[veca vecb vecc] = |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|`
`Rightarrow = (a_(1)b_(2)c_(3)+a_(2)b_(3)c_(1)+a_(3)b_(1)c_(2))`
`-(a_(1)b_(3)c_(2)+a_(2)b_(1)c_(3)+a_(3)b_(2)c_(1))`
Now we know that `A.M. ge G.M.` therefore
`((a_(1)+b_(1)+c_(1))+(a_(2)+b_(2)+c_(2))+(a_(3)+b_(3)+c_(3)))/3`
`ge[(a_(1)+b_(1)+c_(1))(a_(2)+b_(2)+c_(2))(a_(3)+b_(3)+c_(3))]^(1//3)`
`Rightarrow [vecx xx vecy vecy xx veczveczxxvecx] ge [(a_(1)+b_(2)+c_(1))(a_(2)+b_(2)+c_(2))(a_(3)+b_(3)+c_(3))]^(1//3)`
`Rightarrow L^(3) ge (a_(1)+b_(1)+c_(1))(a_(2)+b_(2)+c_(2))(a_(3)+b_(3)+c_(3))`
`=a_(1)b_(2)c_(3)+a_(2)b_(3)c_(1)+a_(3)b_(1)c_(2)+24` more such terms
`gea_(1)b_(2)c_(3)+a_(2)b_(3)c_(1)+a_(3)b_(1)c_(2)" " (therefore a_(r),b_(r),c_(r) ge or r=1,2,3)`
`ge(a_(1)b_(2)c_(3)+a_(2)b_(3)c_(1)+a_(3)b_(1)c_(2))`
`-(a_(1)b_(3)c_(2)+a_(2)b_(1)c_(2)+a_(3)b_(2)c_(1))` (same reason)
= V
Thus , `L^(3) ge V`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Let V be the volume of the parallelopied formed by the vectors overset(to)(a) =a_(1) hat(i) +a_(2)hat(j) +a_(3)hat(k) , overset(to)(b) =b_(1)hat(i) +b_(2)hat(j) +b_(3)hat(k) " and " overset(to)(C) =c_(1)hat(i) +c_(2)hat(j) +c_(3)hat(k) If a_(r) , b_(r) , c_(r) where r=1,2,3 are non-negative real numbers and overset(3)underset(r=1)(Sigma) (a_(r)+b_(r)+c_(r))=3L. Show that V le L^(3)

Let the vectors veca,vecbvecc be given as a_(1)hati+a_(2)hatj+a_(3)hatk,b_(1)hati+b_(2)hatj+b_(3)hatkc_(1)hati+c_(2)hatj+c_(3)hatk . Then show that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

Let the vectors veca, vecb, vec c be given as a_(1)hat i + a_(2)hatj + a_(3)hat k, b_(1)hat i + b_(2) hat j + b_(3) hat k , c_(1)hat i + (c_(2)hat j )+( c_(3)hat k) .Then show tha vec a xx(vec b + vec c) = (vec a xx vec b)+( vec a xx vec c ).

veca=2hati+hatj+hatk , vecb=b_(1)hati+b_(2)hatj+b_(3)hatk , veca xx vecb=5hati+2hatj-12hatk, veca.vecb=11 , then b_(1)+b_(2)+b_(3)=

Given veca = 2hati + hatj - 8 hatk and vecb = hati + 3hatj - 4hatk then |veca + vecb| = ……………………… .

Show that the vectors veca=2hati+3hatj+6hatk,vecb=6hati+2hatj-3hatk, " ""and"" "vecc=3hati-6hatj+2hatk , are mutually orthogonal.