Home
Class 11
MATHS
vecu, vecv and vecw are three nono-copla...

`vecu, vecv and vecw` are three nono-coplanar unit vectors and `alpha, beta and gamma` are the angles between `vecu and vecu, vecv and vecw and vecw and vecu`, respectively and `vecx , vecy and vecz` are unit vectors along the bisectors of the angles `alpha, beta and gamma.` respectively, prove that `[vecx xx vecy vecy xx vecz vecz xx vecx) = 1/16 [ vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2`.

Text Solution

Verified by Experts

WE know that `[vecx xx vecy vecy xx veczveczxx vecx] = [vecx vecy vecz] ^(2)` Also a vector along the bisector of given two unit vectors
`vecu,vecv,"is " vecu +vecv`
A unit vector along the bisector is `(vecu +vecv)/(|vecu +vecv|)`
`|vecu +vecv|^(2)=1+1+2vecu.vecv=2+2cosalpha=4cos^(2)""alpha/2`
`Rightarrow vecx = (vecu +vecv)/(2cos ""alpha/2)`
similarly , ` vecy= (vecv + vecw)/(2cosbeta//2) and vecz= (vecu+vecw)/(2cosgamma//2)`
`Rightarrow [ vecxvecy vecz] = 1/8[vecu+vecv vecv + vecw vecu + vecw] xx sec "" alpha/2 sec"" beta/2 sec"" gamma/2`
`= 1/82[vecu vecv vecw] sec""alpha/2sec"" beta/2sec"" gamma/2`
`1/4[vecu vecv vecw] sec""alpha/2 sec""beta/2sec""gamma/2`
`Rightarrow [vecx xx vecyvecy xxvecz vecz xx vecx] = [vecx " "vecy " " vecz]^(2)`
`= 1/16[vecu vecv vecw]^(2) sec^(2)""alpha/2 sec^(2)""beta/2 sec^(2)""gamma/2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

vec u , vec va n d vec w are three non-coplanar unit vecrtors anf alpha,betaa n dgamma are the angles between vec ua n d vec v , vec va n d vec w ,a n d vec wa n d vec u , respectively, and vec x , vec ya n d vec z are unit vectors along the bisectors of the angles alpha,betaa n dgamma , respectively. Prove that [ vec xxx vec y vec yxx vec z vec zxx vec x]=1/(16)[ vec u vec v vec w]^2sec^2alpha/2sec^2beta/2sec^2gamma/2dot

Find the angle between the vectors 3veci-4vecj+veck and veci-3vecj+4veck .

If alpha(veca xx vecb)+beta(vecb xx vecc)+gamma(vecc xx veca)=0 , then

If a vector vec(alpha) lies in the plane of vec(beta)andvec(gamma), then

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

If vec x and vecy are unit vectors and |vecz| = 2/sqrt7 such that vecz + vecz xx vecx = vecy then find the angle theta between vecx and vecz

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

Find the unit vector in the direction of the vector veci-2vecj+3veck .