Home
Class 11
MATHS
If veca, vecb,vecc and vecd are distin...

If ` veca, vecb,vecc and vecd ` are distinct vectors such that `veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd`. Prove that `(veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.`

Text Solution

Verified by Experts

Given that `veca xx vecc = vecb xx vecd`
and `veca xx vecb = vecc xx vecd`
subtracting (ii) from (i), we get
`vecaxx (vecc-vecb)=(vecb-vecc)xxvecd`
`vecaxx(vecc-vecb)=vecd xx(vecc-vecb)`
`vecaxx(vecc-vecb)-vecd xx (vecc-vecd)=0`
`or (veca -vecd) xx (vecc-vecd)=0`
` or (veca-vecd)xx (vecc-vecd)=0`
`or (veca -vecd)||vecc-vecd) (because veca -vecd ne0, vecc-vecb ne 0)`
Hence the angle between ` veca -vecd d and vecc-vecb` is either 0 is `180^(@)`
`Rightarrow (veca-vecd). (vecc-vecb)=|veca-vecd||vecc-vecb|cos0 ne 0`
as `veca, vecb , vecc and vecd` all are different.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that veca-vecd and vecb-vecc are parallel.

if veca xx vecb = vecc,vecb xx vecc = veca , " where " vecc ne vec0 then

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

Show that (veca xx vecb) *(vecc xx vecd) +(vecb xx vecc) *(veca xx vecd) +(vecc xx veca) *(vecb xx vecd)=0 .

If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2 , vecc.vecd=1/2 and angle between veca xx vecb and vecc xx vecd is pi/6 then the value of |[vecavecbvecd]vecc-[vecavecbvecc]vecd|=

If veca, vecb and vecc are three unit vectors such that veca xx (vecb xx vecc) = 1/2 vecb , " then " ( vecb and vecc being non parallel)

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca