Home
Class 11
MATHS
Let vecA , vecB and vecC be vectors of l...

Let `vecA , vecB and vecC` be vectors of legth , 3,4and 5 respectively. Let `vecA` be perpendicular to `vecB + vecC, vecB " to " vecC + vecA and vecC " to" vecA + vecB` then the length of vector `vecA + vecB+ vecC` is __________.

Text Solution

Verified by Experts

The correct Answer is:
`5sqrt2`

Given that `|vecA|=3, |vecB|=4, |vecC|=5`
`vecAbot (vecB + vecC) Rightarrow vecA. (vecB +vecC) =0`

`Rightarrow vecA.vecB + vecA.vecC=0`
` vecB bot (vecC +vecA)RightarrowvecB.(vecC+vecA_=0`
`Rightarrow vecB.vecC+vecB.vecA=0`
`vecCbot (vecA+vecB) RightarrowvecC. (vecA+vecB)=0`
` Rightarrow vecC.vecA+vecC.vecdB=0`
Adding (i), (ii) and (iii) we get
`2(vecA.vecBr+vecB.vecC+vecC.vecA)=0`
Now , `|vecA + vecB + vecC|^(2)`
`(vecA + vecB+vecC).(vecA + vecB+vecC)`
`|vecA|^(2)+|vecB|^(2)+|vecC|^(2)`
`+2(vecA.vecB + vecB.vecC+vecC.vecA)`
9+16+25+0
= 50
`|vecA + vecB +vecC|= 5sqrt2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Let vecC=vecA+vecB

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

If veca.vecb=vecb.vecc=vecc.veca=0 ,then the value of |[veca,vecb,vecc]| is________

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

If (veca xx vecb)xx vecc= veca xx (vecb xx vecc) and vecb perpendicular to vecc then which is true ?

If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc and the angle between vecb and vecc is pi//3 then the value of |vecaxxvecb -veca xx vecc| is

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .