Home
Class 11
MATHS
If vecb and vecc are any two mutually pe...

If `vecb and vecc` are any two mutually perpendicular unit vectors and `veca` is any vector, then `(veca.vecb)vecb+(veca.vecc)vecc+(veca.(vecbxxvecc))/(|vecbxxvecc|^2)(vecbxxvecc)=` (A) 0 (B) `veca (C) `veca/2` (D) `2veca`

Text Solution

Verified by Experts

The correct Answer is:
`veca`

Let `vecalpha, vecbeta,vecgamma` be any three mutually perpendicular non-coplanar, unit vectors and `veca` be any vector, then
`veca= (veca.vecalpha)vecalpha+ (veca.vecbeta)+(veca.vecgamma)vecgamma`
Here `vecb, vecc` are two mutually perpendicular vectors,
therefore, `vecb , vecc and (vecb xx vecc)/(|vecb xx vecc|)` are three mutually
Perpendicular non-coplanaar unit vectors. Hence
`veca=(veca .vecb)vecb+(veca.vecc)vecc`
`+(veca.(vecbxxvecc)/(|vecb xx vecc|))(vecb xx vecc)/(|vecb xx vecc|)`
`(veca.vecb)vecb+(veca.vecc)vecc`
`+(veca.(vecbxxvecc))/(|vecb xx vecc|^(2))(vecbxxvecc)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three mutually perpendicular unit vectors then |veca+vecb+vecc| is

If veca,vecb,vecc are three mutually perpendicular unit vectors, then prove that abs(veca+vecb+vecc)=sqrt3

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

The vectors veca-vecb,vecb-vecc,vecc-veca are

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [veca+vecb+vecc veca+vecb vecb +vecc] equals

[veca, veca+vecb, veca+vecb+vecc] is :

if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector make equal angles which veca, vecb and vecc then find the value of |veca+ vecb + vecc + vecd|^2

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=