Home
Class 11
MATHS
Let veca, vecb and vecc be three vectors...

Let `veca, vecb` and `vecc` be three vectors having magnitudes 1,1 and 2 resectively. If `vecaxx(vecaxxvecc)+vecb=vec0` then the acute angel between `veca` and `vecc` is

Text Solution

Verified by Experts

The correct Answer is:
`pi//6`

`veca xx (vecaxxvecc) +vecb=vec0`
`or (veca.vecc)veca-(veca.veca)vecc+vecb=vec0`
`or 2 cos theta. veca-vecc+vecb=vec0`
(using `|veca|=1,|vecb|=1,|vecc|=2`)
`or (2costheta veca-vecc)^(2)=(-vecb)^(2)`
`or 4cos^(2)theta.|veca|^(2)+|vecc|^(2)`
`-2.2 cos theta.veca.vecc=|vecb|^(2)`
`or 4cos^(2)theta+4-8costheta.costheta=1`
`or cos^(2)theta-8cos^(2)theta+4=1`
`or 4 cos^(2) theta=3`
`or cos theta = +- sqrt3//2`
for `theta` to be acute , `cos theta= sqrt3/2 Rightarrow theta= pi/6`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between veca and vecb "is" theta and veca xx (veca xxvecb)=vecc . Then tan theta is equal to

If veca+vecb+vecc =0, |veca|=3, |vecb|=5, |vecc|=7 then the angle between veca and vecb is :

Let veca,vecb and vecc be the non zero vectors such that (vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca. if theta is the acute angle between the vectors vecb and veca then theta equals (A) 1/3 (B) sqrt(2)/3 (C) 2/3 (D) 2sqrt(2)/3

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

If veca,vecb, vecc are three non-coplanar vectors such that vecaxx(vecbxx vecc)=(vecb+vecc)/(sqrt(2)) then the angle between veca and vecb is ________.

If veca, vecb, vecc are three non - coplanar vector such that vecaxx(vecbxxvecc)=(vecb+vecc)/(sqrt2) , then the angle between veca and vecb is ……………. .

If veca,vecb and vecc are three unit vectors satisfying veca-vecb-sqrt3 vecc=0 then the angle between veca and vecc is:

If veca,vecb and vecc are three unit vectors satisfying veca-sqrt(3)vecb+vecc=vec0 then find the angle between veca and vecc ?

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|