Home
Class 11
MATHS
A, B C and D are four points in a plane ...

A, B C and D are four points in a plane with position vectors, `veca, vecb vecc and vecd` respectively, such that `(veca-vecd).(vecb-vecc)= (vecb-vecd).(vecc-veca)=0` then point D is the ______ of triangle ABC.

Text Solution

Verified by Experts

The correct Answer is:
orthocenter

Given that `veca, vecb , vecc and vecd` are position vectors of points A,B,C and D, respectively, such that
`(veca - vecd) . (vecb - vecc) = (vecb.vecd) . (vecc- veca) =0`
`Rightarrow vec(DA).vec(CB) = vec(DB).vec(AC) =0`
` Rightarrow vec(DA) bot vec(CB) and vec(DB) bot vec(AC)`
Clerly, D is the orthocentre of `triangleABC`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

Prove that [veca-vecb,vecb-vecc,vecc-veca]=0

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

The vectors veca-vecb,vecb-vecc,vecc-veca are

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that veca-vecd and vecb-vecc are parallel.

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0