Home
Class 11
MATHS
If vecx.veca=0 , vecx.vecb=0 , vec...

If ` vecx.veca=0 ` , ` vecx.vecb=0 ` , ` vecx.vecc=0 ` and ` vecxnevec0 ` then show yhat ` veca ` , ` vecb ` , ` vecc ` are coplanar .

Text Solution

Verified by Experts

The correct Answer is:
1

` vecX. vecA = 0 Rightarrow " either " vecA = 0 or vecX bot vecA`
` vecX.vecC =0 Rightarrow " either" vecC=0 vecX bot vecC`
In any of the three cases,
`vecA, vecB, vecC =0 Rightarrow [vecA vecB vecC] =0`
Otherwise if `vecX bot vecA, vecX bot vecB and vecX bot vecC` , then
`vecA, vecB and vecC` are coplanar. then
` [ vecA vecB vecC] =0`
Therefore, the statement is true.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

if veca xx vecb = vecc,vecb xx vecc = veca , " where " vecc ne vec0 then

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If vecA+vecB+vecC =0 then vecAxxvecB is :

If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .