Home
Class 11
MATHS
The number of vectors of unit length ...

The number of vectors of unit length perpendicular to vectors ` vec a=(1,1,0)a n d vec b=(0,1,1)` is a. one b. two c. three`` d. infinite

A

one

B

two

C

three

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
b

we know that if `hatn` is perpendicular to `veca` as we as `vecb` .then
`hatn=(vecaxxvecb)/(|vecaxxvecb|)or (vecbxxveca)/(|vecbxxveca|)`
As ` veca xx vecb and vecb xx veca` represent two vectors in opposite directions , we have two possible value of `hatn`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec b=(1,-2,3) and satisfies the condition vec c .( hat i+2 hat j-7 hat k)=10. Then vector vec c is equal to a. (7,5,1) b. -7,-5,-1 c. 1,1,-1 d. none of these

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec b . If the angle between aa n db is pi/6, then prove that |(a_1 a_2a_3)(b_1b_2b_3)(c_1c_2c_3)|=1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b . If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

vec aa n d vec b are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to vec a , vec ba n d vec axx vec b is a. 1/(sqrt(2))( vec a+ vec b+ vec axx vec b) b. 1/2( vec axx vec b+ vec a+ vec b) c. 1/(sqrt(3))( vec a+ vec b+ vec axx vec b) d. 1/3( vec a+ vec b+ vec axx vec b)

If vec(a),vec(b),vec(c),are mutually perpendicular unit vectors,then |vec(a)+vec(b)+vec(c)| is …………..

Let veca,vecb,vecc be three non-zero vectors such that vec(c) is a unit vector perpendicular to both vec(a)andvec(c). If the angle between vec(a)andvec(c)" is "(pi)/(6)," show that "[vec(a),vec(b),vec(c)]^(2)=(1)/(4)absvec(a)^(2)absvec(b)^(2).

Let vec aa n d vec b be unit vectors that are perpendicular to each other. Then [ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b] will always be equal to a. 1 b. 0 c. -1 d. none of these

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot