Home
Class 11
MATHS
Which of the following expressions are...

Which of the following expressions are meaningful? a.` vec u ( vec vxx vec w)` b. `( vec u .vec v).vec w` c. `( vec u . vec v)vec w` d. ` vec uxx( vec v . vec w)`

A

`vecu.(vecvxx vecw)`

B

`(vecu.vecv).vecw`

C

`(vecu.vecv)vecw`

D

`vecu xx (vecv . Vecw)`

Text Solution

Verified by Experts

The correct Answer is:
a,c

Dot product of two vectors gives a scalar quantity.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1255 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|288 Videos

Similar Questions

Explore conceptually related problems

For three vectors vec u , vec va n d vec w which of the following expressions is not equal to any of the remaining three ? a. vec u .( vec vxx vec w) b. ( vec vxx vec w). vec u c. vec v.( vec uxx vec w) d. ( vec uxx vec v).vec w

If vec x+ vec cxx vec y= vec a and vec y+ vec cxx vec x= vec b ,where vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c . vec a) vec c)/(1+ vec c . vec c) b. vec x=( vec cxx vec b+ vec b+( vec c . vec a) vec c)/(1+ vec c . vec c) c. vec y=( vec axx vec c+ vec b+( vec c . vec b) vec c)/(1+ vec c . vec c) d. none of these

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

For any two vectors vec ua n d vec v prove that ( vec u . vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Let the pairs a , ba n dc ,d each determine a plane. Then the planes are parallel if ( vec axx vec c)xx( vec bxx vec d)= vec0 b. ( vec axx vec c)dot( vec bxx vec d)= vec0 c. ( vec axx vec b)xx( vec cxx vec d)= vec0 d. ( vec axx vec b)dot( vec cxx vec d)= vec0

Let vec u a n d vec v be unit vectors such that vec uxx vec v+ vec u= vec w and vec wxx vec u= vec vdot Find the value of [ vec u vec v vec w]dot

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)