Home
Class 12
MATHS
Evaluate int tan^(3)x dx...

Evaluate `int tan^(3)x dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2) tan^(2)x-log|sec x|+C`

`I=int tan^(3)x dx`
`=int tan^(2)x tanx dx`
`=int (sec^(2)x-1)tanx dx`
`=int tanx sec^(2) x dx - int tanx dx`
`=I_(1)-log|secx|+C, " where " I_(1)=int tanx sec^(2)x dx`
Putting `tan x =t " and " sec^(2) x dx=dt " in " I_(1),` we get
`I_(1)= int t dt = (t^(2))/(2)=(1)/(2) tan^(2)x +C`
Hence, `I=(1)/(2) tan^(2)x-log|sec x|+C`.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int 3cot^(3) x dx

Evaluate int cot^(3) x dx

Evaluate: int sec^(3)2x dx

Evaluate: int cot^3 x dx

Evaluate: int tan^(-1)(secx+tanx)dx ,-pi/2

Evaluate int x sin 3x dx .

Evaluate: int sec^3 2x dx

Evaluate int (3x+2) ^5 dx

Evaluate int tanx tan 2x tan 3x dx .

Evaluate int(3tan^(-1)x)/(1+x^2)dx