Home
Class 12
MATHS
Evaluate intsin^(3)x cos^(2)x dx...

Evaluate `intsin^(3)x cos^(2)x dx`

Text Solution

Verified by Experts

The correct Answer is:
` -(cos^(3))/(3)+(cos^(5)x)/(5) +C`

[Here, power of `sinx` is odd positive integer. Therefore, put `z= cos x.`]
Let ` z=cos x.` Then `dz= -sinx dx`. Now,
`=intsin^(3)x cos^(2)x dx=int sin^(2)x cos^(2)x sinx dx`
`= int (1-cos^(2)x)cos^(2)x sinx dx`
`int(1-z^(2))z^(2)(-dz)`
`=-int(z^(2)-z^(4))dz`
`=-((z^(3))/(3)-(z^(5))/(5))+C= - (cos^(3))/(3)+(cos^(5)x)/(5) +C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.3|16 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate intsin^(3)xdx

Evaluate: intsin^3xcos^2x dx

Evaluate intsin2x.e^(cos^(2)x)dx

Evaluate: intsin^4x\ dx

Evaluate intsin^(5)x.cosxdx .

Evaluate : intsin4x.e^(tan^(2)x)dx

Evaluate int(sin2x)/(1+cos^(2)x)dx .

Evaluate: intsin^2(logx)dx

intsin^3xcos^5x dx

Evaluate int sqrt(x) - cos ^(2) (x)/(2) dx