Home
Class 12
MATHS
If c!=0 and the equation p//(2x)=a//(x+c...

If `c!=0` and the equation `p//(2x)=a//(x+c)+b//(x-c)` has two equal roots, then `p` can be `(sqrt(a)-sqrt(b))^2` b. `(sqrt(a)+sqrt(b))^2` c. `a+b` d. `a-b`

A

`(sqrt(a)-sqrt(b))^(2)`

B

`(sqrt(a)+sqrt(b))^(2)`

C

`a+b`

D

`a-b`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(a,b)` We have `(p)/(2x)=((a+b)x+c(b-a))/(x^(2)-c^(2))`
`implies p(x^(2)-c^(2))=2(a+b)x^(2)-2c(a-b)x`
`implies (2a+2b-p)x^(2)-2c(a-b)x+pc^(2)=0`
Since roots are equal
`D=c^(2)(a-b)^(2)-pc^(2)(2a+2b-p)=0`
`implies (a-b)^(2)-2p(a+b)+p^(2)=0 (:' c^(2) ne 0)`
`implies [p-(a+b)]^(2)=(a+b)^(2)-(a-b)^(2)`
`impliesp=a+b+-2sqrt(ab)=(sqrt(a)+-sqrt(b))^(2)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Examples|133 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

If c ne 0 and p/(2x)= a/(x+c) + b/(x-c) has two equal roots, then find p.

If the equation (b^2 + c^2) x^2 -2 (a+b) cx + (c^2 + a^2) = 0 has equal roots, then

The quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 has equal roots if

the roots of the equation (a+sqrt(b))^(x^2-15)+(a-sqrt(b))^(x^2-15)=2a where a^2-b=1 are

If one root x^2-x-k=0 is square of the other, then k= a. 2+-sqrt(5) b. 2+-sqrt(3) c. 3+-sqrt(2) d. 5+-sqrt(2)

The function f(x)=x(x+4)e^(-x//2) has its local maxima at x=adot Then (a) a=2sqrt(2) (b) a=1-sqrt(3) (c) a=-1+sqrt(3) (d) a=-4

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

Sove : 2 sqrt(x/a) + 3 sqrt(a/x) = b/a + (6a)/b