Home
Class 12
MATHS
Let f(x)=x^(3)+x+1, let p(x) be a cubic ...

Let `f(x)=x^(3)+x+1`, let `p(x)` be a cubic polynomial such that the roots of `p(x)=0` are the squares of the roots of `f(x)=0` , then

A

`p(1)=3`

B

the value of `P(n)`, `n in N` is odd

C

Sum of all roots of `p(x)=0` is `-2`

D

Sum of all product of roots taken two at a time is `1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`(a,b,c,d)` Let `x=alpha^(2)`, `alpha=sqrt(x)`, put this value in `x^(3)+x+1=0`
We get `xsqrt(x)+sqrt(x)+1=0`
`sqrt(x)(x+1)=-1`
`impliesx(x+1)^(2)=1`
`impliesx^(3)+2x^(2)+x-1=0`
`impliesp(x)=x^(3)+2x^(2)+x-1`
`impliesp(1)=3`
Also `p(1)` is odd when `n` is odd or even.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Examples|133 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial of degree 5 such that f(|x|)=0 has 8 real distinct , Then number of real roots of f(x)=0 is ________.

Let f(x) be a quadratic polynomial satisfying f(2) + f(4) = 0. If unity is one root of f(x) = 0 then find the other root.

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

Let f(x) be a polynomial with integral coefficients. If f(1) and f(2) both are odd integers, prove that f(x) = 0 can' t have any integral root.

Repeated roots : If equation f(x) = 0, where f(x) is a polyno- mial function, has roots alpha,alpha,beta,… or alpha root is repreated root, then f(x) = 0 is equivalent to (x-alpha)^(2)(x-beta)…=0, from which we can conclude that f(x)=0 or 2(x-alpha)[(x-beta)...]+(x-alpha)^(2)[(x-beta)...]'=0 or (x-alpha) [2 {(x-beta)...}+(x-alpha){(x-beta)...}']=0 has root alpha . Thus, if alpha root occurs twice in the, equation, then it is common in equations f(x) = 0 and f'(x) = 0. Similarly, if alpha root occurs thrice in equation, then it is common in the equations f(x)=0, f'(x)=0, and f'''(x)=0. If alpha root occurs p times and beta root occurs q times in polynomial equation f(x)=0 of degree n(1ltp,qltn) , then which of the following is not ture [where f^(r)(x) represents rth derivative of f(x) w.r.t x] ?

Repeated roots : If equation f(x) = 0, where f(x) is a polyno- mial function, has roots alpha,alpha,beta,… or alpha root is repreated root, then f(x) = 0 is equivalent to (x-alpha)^(2)(x-beta)…=0, from which we can conclude that f(x)=0 or 2(x-alpha)[(x-beta)...]+(x-alpha)^(2)[(x-beta)...]'=0 or (x-alpha) [2 {(x-beta)...}+(x-alpha){(x-beta)...}']=0 has root alpha . Thus, if alpha root occurs twice in the, equation, then it is common in equations f(x) = 0 and f'(x) = 0. Similarly, if alpha root occurs thrice in equation, then it is common in the equations f(x)=0, f'(x)=0, and f'''(x)=0. If x-c is a factor of order m of the polynomial f(x) of degree n (1ltmltn) , then x=c is a root of the polynomial [where f^(r)(x) represent rth derivative of f(x) w.r.t. x]

Let f(x)=x^(2)-ax+b , 'a' is odd positive integar and the roots of the equation f(x)=0 are two distinct prime numbers. If a+b=35 , then the value of f(10)=

Consider the following figure. Answer the following questions (i) What are the roots of the f(x) = 0? (ii) What are the roots of the f(x) = 4? (iii)What are the roots of the f(x) = g (x)?

Column I: Equation, Column II: No. of roots x^2tanx=1,x in [0,2pi] , p. 5 2^(cosx)=|sinx|,x in [0,2pi] , q. 2 If f(x) is a polynomial of degree 5 with real coefficients such that f(|x|)=0 has 8 real roots, then the number of roots of f(x)=0. , r. 3 7^(|x|)(|5-|x||)=1 , s. 4

Let a in R and f : R rarr R be given by f(x)=x^(5)-5x+a , then (a) f(x)=0 has three real roots if a gt 4 (b) f(x)=0 has only one real root if a gt 4 (c) f(x)=0 has three real roots if a lt -4 (d) f(x)=0 has three real roots if -4 lt a lt 4