Home
Class 12
MATHS
The value of sum(n=0)^(100)i^(n!) equals...

The value of `sum_(n=0)^(100)i^(n!)` equals (where `i=sqrt(-1))`

A

`-1`

B

`i`

C

`2i+95`

D

`97+i`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `S=sum_(n=0)^(100)(i)^(n!)`
`=(i)^(0!)+(i)^(1!)+(i)^(2!)+…..`
`=i+i-1+i^(6)+i^(24)+(i)^(5!)+(i)^(6!)+..+(i)^(100!)`
`=95+2i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

The value of sum_(i=1)^(13) (n^(n) + i^(n-1)) is

The value of sum_(r=0)^n(a+r+a r)(-a)^r is equal to

The value of sum_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)= -1 , is equal to

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

The value of sum_(r=1)^n(-1)^(r+1)("^n C r)/(r+1) is equal to a. -1/(n+1) b. 1/n c. 1/(n+1) d. n/(n+1)

Simplify the following : sum_(n=1)^(100)i^(n)

The sum of i-2-3i+4 up to 100 terms, where i=sqrt(-1) is a. 50(1-i) b. 25 i c. 25(1+i) d. 100(1-i)

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to