Home
Class 12
MATHS
The complex number, z=((-sqrt(3)+3i)(1-i...

The complex number, `z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))`

A

lies on real axis

B

lies on imaginary axis

C

lies in first quadrant

D

lies in second quadrant

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))`
`=(sqrt(3)(-1+sqrt(3)i)(1-i))/(3(sqrt(3)+i)(i)(1+i))`
`=((-1+sqrt(3)i)(1-i))/(sqrt(3)(-1+sqrt(3)i)(1+i))`
`=((1-i)^(2))/(2sqrt(3))=(-2i)/(2sqrt(3))`, which lies on imaginergy axis
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos

Similar Questions

Explore conceptually related problems

Express the following expression in the form of a+ib, ((3+isqrt(5))(3-isqrt(5)))/((sqrt(3)+sqrt(2)i)+(sqrt(3)-sqrt(2)i))

The value of ((1+sqrt(3)i)/(1 - sqrt(3)i))^(10) is

The complex number (2+3i)/(3+2i) in a+ib form

The principal argument of the complex number ((1 + i sqrt(3))^(2))/(4i(1 - i sqrt(3))) is

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

Show that ((i + sqrt(3))/(-i + sqrt(3)))^(2omega) + ((i - sqrt(3))/(i + sqrt(3)))^(2omega) = -1