Home
Class 12
MATHS
If the argument of (z-a)(barz-b) is equa...

If the argument of `(z-a)(barz-b)` is equal to that `((sqrt(3)+i)(1+sqrt(3)i)/(1+i))` where a,b,c are two real number and z is the complex conjugate o the complex number z find the locus of z in the rgand diagram. Find the value of a and b so that locus becomes a circle having its centre at `1/2(3+i)`

A

`(3,2)`

B

`(2,1)`

C

`(2,3)`

D

`(2,4)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `(z-a)(barz-b)=zbarz-abarz-bz+ab(:'z=x+iy)`
Argument of `(z-a)(barz-b)=((y(a-b))/(x^(2)+y^(2)-ax+bx+ab))`
Also, `((sqrt(3)+i)(1+sqrt(3)i)/(1+i)=(sqrt(3)-sqrt(3)+i(1+3))/(1+i)=2+2i`
Argument of `2+2i=tan^(-1)(2//2)=pi//4`
`impliesx^(2)+y^(2)-(a+b)x-(a-b)y+ab=0`
Thus, the locus of `z` is a circle
Given centre is `(3+i)/(2)`
`implies (a+b)/(2)=(3)/(2)` and `(a-b)/(2)=(1)/(2)`
`impliesa=2`, `b=1`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos

Similar Questions

Explore conceptually related problems

Given the complex number z = 2 +3i, represent the complex numbers in Argand diagram. z, iz, and z + iz

For any complex number z find the minimum value of |z|+|z-2i|

P represents the variable complex number z find the locus of z if : Re((z+1)/(z+i))=1

Given the complex number z = 2 +3i, represent the complex numbers in Argand diagram. z, -iz, and z - iz.

If |z-3+i|=4 , then the locus of z is

Represents the variable complex number z . Find the locus of P if arg((z-1)/(z+3))=(pi)/(2) .

Find the correct staements in the following? If P represents the complex number z and if |2z-1|=2|z| then the locus of z .

If z=((1+isqrt3)^2)/(4i(1-isqrt3)) is a complex number then |z| is