Home
Class 12
MATHS
All complex numbers 'z' which satisfy th...

All complex numbers 'z' which satisfy the relation `|z-|z+1||=|z+|z-1||` on the complex plane lie on the

A

`y=x`

B

`y=-x`

C

circle `x^(2)+y^(2)=1`

D

line `x=0` or on a line segment joining `(-1,0) to `(1,0)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` Given `|z-|z+1||^(2)=|z+|z-1||^(2)`
`:. (z-|z+1|)(barz-|z+1|)=(z+|z-1|)(barz+|z-1|)`
`zbarz-z|z+1|-barz|z+1|+|z+1|^(2)`
`=zbarz+z|z-1|+barz|z-1|+|z-1|^(2)`
`|z+1|^(2)-|z-1|^(2)=(z+barz)[|z-1|+|z+1|]`
`(z+1)(barz+1)-(z-1)(barz-1)=(z+barz)[|z-1|+|z+1|]`
`(zbarz+z+barz+1)-(zbarz-z-barz+1)=(z+barz)[|z-1|+|z+1|]`
`2(z+barz)=(z+barz)[|z+1|+|z-1|]`
`(z+barz)[|z+1|+|z-1|-2]=0`
`implies` Either `z+barz=0implies z` is purely imaginary
`impliesz` lies on `y` axis `impliesx=0`
or `|z+1|+|z-1|=2`
`impliesz` lies on the line segment joining `(-1,0)` and `(1,0)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos

Similar Questions

Explore conceptually related problems

The complex number z which satisfies the condition |(i+z)/(i-z)| = 1 lies on

Variable complex number z satisfies the equation |z-1+2i|+|z+3-i|=10 . Prove that locus of complex number z is ellipse. Also, find the centre, foci and eccentricity of the ellipse.

A complex number z satisfies the equation |Z^(2)-9|+|Z^(2)|=41 , then the true statements among the following are

The maximum area of the triangle formed by the complex coordinates z, z_1,z_2 which satisfy the relations |z-z_1|=|z-z_2| and |z-(z_1+z_2 )/2| |z_1-z_2| is

If z is complex number, then the locus of z satisfying the condition |2z-1|=|z-1| is (a)perpendicular bisector of line segment joining 1/2 and 1 (b)circle (c)parabola (d)none of the above curves

Find the complex number omega satisfying the equation z^3=8i and lying in the second quadrant on the complex plane.

If complex number z(z!=2) satisfies the equation z^2=4z+|z|^2+(16)/(|z|^3) ,then the value of |z|^4 is______.

Suppose two complex numbers z=a+ib , w=c+id satisfy the equation (z+w)/(z)=(w)/(z+w) . Then

Let z be a complex number satisfying |z+16|=4|z+1| . Then

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|