Home
Class 12
MATHS
If z(1), z(2) are two complex numbers su...

If `z_(1)`, `z_(2)` are two complex numbers such that `|(z_(1)-z_(2))/(z_(1)+z_(2))|=1` and `iz_(1)=Kz_(2)`, where ` K in R`, then the angle between `z_(1)-z_(2)` and `z_(1)+z_(2)` is

A

`tan^(-1)((2K)/(K^(2)+1))`

B

`tan^(-1)((2K)/(1-K^(2)))`

C

`-2tan^(-1)K`

D

`2tan^(-1)K`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `(z_(1)-z_(2))/(z_(1)+z_(2))=cosalpha+isinalpha`
`implies(2z_(1))/(-2z_(2))=(cosalpha+isinalpha+1)/(cosalpha-1+isinalpha)`
`(2cos^(2)alpha//2+2isinalpha//2cosalpha//2)/(2isinalpha//2cosalpha//2-2sin^(2)alpha//2)`
`(2cosalpha//2[cosalpha//2+isinalpha//2])/(2isinalpha//2[cosalpha//2+isinalpha//2])`
`implies(z_(1))/(z_(2))=icot"(alpha)/(2)`
`implies` Given `(z_(1))/(z_(2))=(K)/(1)`
`:.tanalpha//2=-1//K`
`tanalpha=(2tanalpha//2)/(1-tan^(2)alpha//2)implies(-2//K)/(1-1//K^(2))implies(-2K)/(K^(2)-1)`
`alpha=tan^(-1)((2K)/(1-K^(2)))implies2tan^(-1)(K)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos

Similar Questions

Explore conceptually related problems

If z_(1)" and "z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 then

If z_(1)" and "z_(2) are two complex numbers such that Im(z_(1)+z_(2))=0, Im(z_(1)z_(2))=0 then

Let z_(1)" and "z_(2) be two complex numbers such that z_(1)z_(2)" and "z_(1)+z_(2) are real then

It z_(1) and z_(2) are two complex numbers, such that |z_(1)| = |z_(2)| , then is it necessary that z_(1) = z_(2) ?

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg z_(1)- arg z_(2) is equal to

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg ((z_1)/(z_2)) is equal to

For any two complex number z_(1) and z_(2) , such that |z_(1)| = |z_(2)| = 1 and z_(1) z_(2) ne -1 , then show that (z_(1) + z_(2))/(1 + z_(1)z_(2)) is real number.

If z_1 and z_2 are two complex number such that |z_1|<1<|z_2| then prove that |(1-z_1 bar z_2)/(z_1-z_2)|<1

If z_(1),z_(2), and z_(3) are three complex numbers such that |z_(1)| = 1, " " |z_(2)| = 2, " " |z_(3)| = 3 and |z_(1) + z_(2) + z_(3) | = 1, show that |9z_(1)z_(2) + 4 z_(1)z_(3) + z_(2)z_(3)| = 6 .