Home
Class 12
MATHS
Let arg(z(k))=((2k+1)pi)/(n) where k=1,2...

Let `arg(z_(k))=((2k+1)pi)/(n)` where `k=1,2,………n`. If `arg(z_(1),z_(2),z_(3),………….z_(n))=pi`, then `n` must be of form `(m in z)`

A

`4m`

B

`2m-1`

C

`2m`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `arg(z_(1),z_(2),z_(3)……….z_(n))=pi`
`impliesarg(z_(1))+arg(z_(2))+….+arg(z_(n))=pi+-2mpi`, `m in I`
`implies (pi)/(n)[3+5+7+….+(2n+1)]=pi+-2mpi`
`implies(pi)/(n)[(n)/(2)[6+2(n-1)]]=pi+-2mpi`
`implies3+n-1=1+-2m`
`impliesn=-1=1+-2m`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos

Similar Questions

Explore conceptually related problems

|z_(1)|=|z_(2)|" and "arg z_(1)+argz_(2)=0 then

If |z_(1)+ z_(2)|=|z_(1)|+|z_(2)| , then arg z_(1) - arg z_(2) is

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then

If (2z_1)/(3z_2) is purely imaginary then |(z_(1)-z_(2))/(z_(1)+z_(2))|

If |z| = 4 and arg(z) = (5pi)/6 , then z = …………..

If z^(n) = cos"" (n pi)/(3) + isin"" (n pi)/(3), then z_(1), z_(2) …. Z_(6) is

If |z_(1)| = |z_(2)| and arg z_(1) + "arg" z_(2) = 0, then which of the following not true.