Home
Class 12
MATHS
If |z|=1 and z ne +-1, then one of the p...

If `|z|=1` and `z ne +-1`, then one of the possible value of `arg(z)-arg(z+1)-arg(z-1)` , is

A

`-pi//6`

B

`pi//3`

C

`-pi//2`

D

`pi//4`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `arg(z)-arg(z+1)-arg(z-1)`
`=arg((z)/(z^(2)-1))`
`=arg((z)/(z^(2)-zbarz))`
`=arg((1)/(z-barz))`
`=arg` (purely imaginary no.)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos

Similar Questions

Explore conceptually related problems

If |z|=1 and z'=(1+z^(2))/(z) , then

If |z| = 1, then the value of (1+z)/(1 +bar(z)) .

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then

If |z| = 4 and arg(z) = (5pi)/6 , then z = …………..

arg(z) + arg(barz) (z != 0) is ………..

The principal value of arg(z) lies in the interval :

Verify that 2 arg (-1) ne arg (-1)^(2)

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is