If `3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc)`, then `a`, `b`, `c` can be in
A
`A.P.`
B
`G.P.`
C
`H.P.`
D
None of these
Text Solution
Verified by Experts
The correct Answer is:
A
`(a)` The given result can be written as `{x-(a-b)^(2)}+{x-(b-c)^(2)}+(x-c)^(2)=0` `impliesx=a-b` `x=b-c` `x=c` `a-b=b-c=c` From `a-b=b-c`, `2b=a+c` `:.a,b,c` can be in `A.P.`
If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to
Find the proudct (a-b-c) (a ^(2) + b ^(2) + c ^(2) - ab + bc-ca) without actual multiplication.
If sintheta=a/(sqrt((a^(2)+b^(2)+c^(2)+2bc))) , then show that (b+c)sintheta=(a)costheta .
If (x+a) (x+b) (x+c) =x^(3) +14x^(2) +59x + 70 , find the value of (i) a+b+c (ii) (1)/(a) +(1)/(b) +(1)/(C ) ( iii) a^(2) +b^(2) +c^(2) (iv) (a)/(bc) +(b)/( ac) +(c )/( ab)
If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.
Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, and C=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot
Show that |{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^(2)),(ab-c^(2),,bc-a^(2),,ca-b^(2)):}| |{:(a^(2),,c^(2),,2ca-b^(2)),(2ab-c^(2),,b^(2),,a^(2)),(b^(2),,2ac-a^(2),,c^(2)):}|.
Find the product (2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)
CENGAGE-PROGRESSION AND SERIES-ARCHIVES (MATRIX MATCH TYPE )