Home
Class 12
MATHS
If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))...

If `x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+....` , `y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+....` and `z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...` then

A

`x`, `y`,`z` are in `A.P.`

B

`(y)/(6)`, `(x)/(3)`,`(z)/(2)` are in `A.P.`

C

`(y)/(6)`, `(x)/(3)`,`(z)/(2)` are in `A.P.`

D

`6y`, `3x`, `2z` are in `H.P.`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `y-x=3((1)/(2^(2))+(1)/(4^(2))+(1)/(6^(2))+…)`
`x-z=((1)/(2^(2))+(1)/(4^(2))+(1)/(6^(2))+…)`
`:. (y-x)=3(x-z)`
`implies4x=y+3zimplies2(x)/(3)=(y)/(6)+(z)/(2)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

(1)/(2(3x+4y))=(1)/(5(2x-3y))=(1)/(4),

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

Solve : (1)/(2x)+(1)/(4y)-(1)/(3z)=(1)/(4),(1)/(x)=(1)/(3y),(1)/(x)-(1)/(5y)+(4)/(z)=2 (2)/(15)

|((x+1/x)^(2),(x-1/x)^(2),1),((y+1/y)^(2),(y-1/y)^(2),1),((z+1/z)^(2),(z-1/z)^(2),1)|

The value of 1- 1/2(3/4) + 1/3(3/4)^(2) -1/4(3/4)^(3) + ... is:

[The value of "int(sqrt(x^(2)+1){log_(e) (x^(2)+1)-2log_(e)x})/(x^(4))dx" is equal to "],[" (a) "(2)/(3)(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))-(2)/(3)}+C],[" (b) "-(1)/(3)(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))-(2)/(3)}+C],[" (c) "(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))+(2)/(3)}+C ]

The value of 1-1/2(2/3)+1/3(2/3)^(2)-1/4(2/3)^(3)+... is

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is