If `x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+....` , `y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+....` and `z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...` then
The value of 1- 1/2(3/4) + 1/3(3/4)^(2) -1/4(3/4)^(3) + ... is:
[The value of "int(sqrt(x^(2)+1){log_(e) (x^(2)+1)-2log_(e)x})/(x^(4))dx" is equal to "],[" (a) "(2)/(3)(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))-(2)/(3)}+C],[" (b) "-(1)/(3)(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))-(2)/(3)}+C],[" (c) "(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))+(2)/(3)}+C ]
The value of 1-1/2(2/3)+1/3(2/3)^(2)-1/4(2/3)^(3)+... is
The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is
CENGAGE-PROGRESSION AND SERIES-ARCHIVES (MATRIX MATCH TYPE )