Home
Class 12
MATHS
If a(1),a(2)a(3),….,a(15) are in A.P and...

If `a_(1),a_(2)a_(3),….,a_(15)` are in `A.P` and `a_(1)+a_(8)+a_(15)=15`, then `a_(2)+a_(3)+a_(8)+a_(13)+a_(14)` is equal to

A

`25`

B

`35`

C

`10`

D

`15`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Given `A.P.` is `a_(1),a_(2),a_(3),…….,a_(15)`
`a_(1)+a_(15)=a_(2)+a_(14)=….=2a_(8)`
`a_(1)+a_(15)+a_(8)=(3)/(2)(a_(1)+a_(15))=15`
`impliesa_(1)+a_(15)=10`
`a_(2)+a_(3)+a_(8)+a_(13)+a_(14)=2(a_(1)+a_(15))+a_(8)`
`=2(10)+5=25`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Let numbers a_(1),a_(2)…a_(16) are in AP and a_(1)+a_(4)+a_(7)+a_(10)+a_(13)+a_(16)=114 then a_(1)+a_(5)+a_(12)+a_(16) is equal to

If a_(1), a_(2), a_(3), ……. , a_(n) are in A.P. and a_(1) = 0 , then the value of (a_(3)/a_(2) + a_(4)/a_(3) + .... + a_(n)/a_(n - 1)) - a_(2)(1/a_(2) + 1/a_(3) + .... + 1/a_(n - 2)) is equal to

if a_(1),a_(2),a+_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(3)= |{:(a_(2)b_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(3)a_(12),,a_(4),,a_(5)):}| then Delta_(2):Delta_(2)= "_____"

If a_(1), a_(2) , ……. A_(n) are in H.P., then the expression a_(1)a_(2) + a_(2)a_(3) + ….. + a_(n - 1)a_(n) is equal to

If a_(1),a_(2),a_(3),…. are in A.P., then a_(p),a_(q),q_(r) are in A.P. if p,q,r are in

If a_(1), a_(2),………, a_(50) are in G.P, then (a_(1) - a_(3) + a_(5) - ....... + a_(49))/(a_(2) - a_(4) + a_(6) - ....... + a_(50)) =

Let a_(1),a_(2),a_(3),….,a_(4001) is an A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+...+(1)/(a_(4000)a_(4001))=10 a_(2)+a_(400)=50 . Then |a_(1)-a_(4001)| is equal to

Let a_(1), a_(2), a_(3),...,a_(49) be in AP such that sum_(k=0)^(12) a_(4k +1) = 416 and a_(9) + a_(43) = 66 . If a_(1)^(2) + a_(2)^(2) + ...+ a_(17)^(2) = 140m , then m is equal to

Let a_(1), a_(2), a_(3), a_(4) be in A.P. If a_(1) + a_(4) = 10 and a_(2)a_(3) = 24 , them the least term of them is

If A_(1), A_(2),..,A_(n) are any n events, then