Home
Class 12
MATHS
Given the sequence of numbers x(1),x(2),...

Given the sequence of numbers `x_(1),x_(2),x_(3),x_(4),….,x_(2005)`, `(x_(1))/(x_(1)+1)=(x_(2))/(x_(2)+3)=(x_(3))/(x_(3)+5)=...=(x_(2005))/(x_(2005)+4009)`, the nature of the sequence is

A

`A.P.`

B

`G.P.`

C

`H.P.`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Given `(x_(1))/(x_(1)+1)=(x_(2))/(x_(2)+3)=(x_(3))/(x_(3)+5)=...=(x_(2005))/(x_(2005)+4009)`
`impliesx_(1)=(lambda)/(1-lambda)`, `x_(2)=(3lambda)/(1-lambda)`, `x_(3)=(5lambda)/(1-lambda)`,……
Hence , `x_(1),x_(2),x_(3),…..,x_(2005)` are in arithmetic progression.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

(3x+1)/((x-2)(x+1))

Prove that for any two numbers x_(1) and x_(2) (2e^(x_1)+e^(x_2))/(3)gte(2x_(1)+x_(2))/(3)

The sequence {x_(k)} is defined by x_(k+1)=x_(k)^(2)+x_(k) and x_(1)=(1)/(2) . Then [(1)/(x_(1)+1)+(1)/(x_(2)+1)+...+(1)/(x_(100)+1)] (where [.] denotes the greatest integer function) is equal to

(3x - 9)/( (x - 1 )(x + 2 )(x^(2)+1))

Value of |{:(1+x_(1),,1+x_(1)x,,1+x_(1)x^(2)),(1+x_(2),,1+x_(2)x,,1+x_(2)x^(2)),(1+x_(3),,1+x_(3)x,,1+x_(3)x^(2)):}| depends upon

Solve, by Cramer's rule the system of equations x_(1)-x_(2)=3,2x_(1)+3x_(2)+4x_(3)=17,x_(2)+2x_(3)=7 .

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(1)^(2) - 1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

Consider the quantities such that x_(1),x_(2),….x_(10),-1 lex_(1),x_(2)….,x_(10)le 1 and x_(1)^(3)+x_(2)^(3)+…+x_(10)^(3)=0 , then the maximum value of x_(1)+x_(2)+….+x_(10) is

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).