Home
Class 12
MATHS
If b-c, bx-cy, bx^(2)-cy^(2) (b,c ne 0) ...

If `b-c`, `bx-cy`, `bx^(2)-cy^(2)` (`b,c ne 0`) are in `G.P`, then the value of `((bx+cy)/(b+c))((bx-cy)/(b-c))` is

A

`x^(2)`

B

`-x^(2)`

C

`2y^(2)`

D

`3y^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `(bx-cy)^(2)=(b-c)(bx^(2)-cy^(2))`
`b^(2)x^(2)+c^(2)y^(2)-2bxy=b^(2)x^(2)-bcy^(2)-bcx^(2)+c^(2)y^(2)`
`bcx^(2)+bcy^(2)-2bcxy=0`
`bc(x-y)^(2)=0`
`impliesx=y` (`:'b`, `c ne 0`)
`implies((bx+cy)/(b+c))((bx-cy)/(b-c))=x^(2)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of (1)/(ax^(2)+bx+c)

If a+c , a+b , b+c are in G.P and a,c,b are in H.P. where a , b , c gt 0 , then the value of (a+b)/(c ) is

Evaluate lim_(xto0)(a+bx)/(c+x)

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

If u=ax+by+cz , v=ay+bz+cx , w=ax+bx+cy , then the value of |{:(a,b,c),(b,c,a),(c,a,b):}|xx|{:(x,y,z),(y,z,x),(z,x,y):}| is

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

If y=a+bx^(2) , where a, b are arbitrary constants, then

If one of the line given by 6x^(2)-xy+4cy^(2)=0 is 3x+4y=0 , then c equals to

If 2a , b , 2c are in A.P. where a , b , c are R^(+) , then the expression f(x)=(ax^(2)-bx+c) has

If alpha" and "beta are the roots of the equation ax^(2)+bx+c=0, (c ne 0) , then the equation whose roots are (1)/(a alpha +b)" and "(1)/(a beta +b) is