If a+c , a+b , b+c are in G.P and a,c,b are in H.P. where a , b , c gt 0 , then the value of (a+b)/(c ) is
Evaluate lim_(xto0)(a+bx)/(c+x)
If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x
If u=ax+by+cz , v=ay+bz+cx , w=ax+bx+cy , then the value of |{:(a,b,c),(b,c,a),(c,a,b):}|xx|{:(x,y,z),(y,z,x),(z,x,y):}| is
Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then
If y=a+bx^(2) , where a, b are arbitrary constants, then
If one of the line given by 6x^(2)-xy+4cy^(2)=0 is 3x+4y=0 , then c equals to
If 2a , b , 2c are in A.P. where a , b , c are R^(+) , then the expression f(x)=(ax^(2)-bx+c) has
If alpha" and "beta are the roots of the equation ax^(2)+bx+c=0, (c ne 0) , then the equation whose roots are (1)/(a alpha +b)" and "(1)/(a beta +b) is
CENGAGE-PROGRESSION AND SERIES-ARCHIVES (MATRIX MATCH TYPE )