If `a+c`, `a+b`, `b+c` are in `G.P` and `a,c,b` are in `H.P.` where `a`,`b`,`c gt 0`, then the value of `(a+b)/(c )` is
A
`3`
B
`2`
C
`(3)/(2)`
D
`4`
Text Solution
Verified by Experts
The correct Answer is:
B
`(b)` `a+c`, `a+b`, `a+c` are in `G.P.` `:. (a+b)^(2)=(a+c)(b+c)` `(a+b)^(2)=ab+c(a+b)+c^(2)`………`(1)` `a,c,b` are in `H.P.` `:.c=(2ab)/(a+b)`………`(2)` From `(1)` and `(2)` `(a+b)^(2)=(3)/(2)c(a+b)+c^(2)` ,brgt `:.2(a+b)^(2)-3c(a+b)-c^(2)=0` `:.a+b=-(c )/(2)`(rejected) or `a+b=2c` `:.(a+b)/(c )=2`