If `a,b,c` are in `H.P`, `b,c,d` are in `G.P` and `c,d,e` are in `A.P.` , then the value of `e` is
A
`(ab^(2))/((2a-b)^(2))`
B
`(a^(2)b)/((2a-b)^(2))`
C
`(a^(2)b^(2))/((2a-b)^(2))`
D
None of these
Text Solution
Verified by Experts
The correct Answer is:
A
`(a)` `a,b,c` are in `H.P.impliesb=(2ac)/(a+c)`….`(i)` `b,c,d` are in `G.P.impliesc^(2)=bd`..`(ii)` `c,d,e` are in `A.P.impliesd=(c+e)/(2)`…..`(iii)` From `(i)`, `ab+bc=2ac` `impliesc=(ab)/(2a-b)`….`(iv)` From `(iii)` and `(iv)` `d=(1)/(2)[(ab)/(2a-b)+e]` ......`(v)` From `(ii)`, `(iv)` and `(v)` `(a^(2)b^(2))/((2a-b)^(2))=(b)/(2)[(ab)/(2a-b)+e]` `impliese=(ab^(2))/((2a-b)^(2))`